Validity of particle size analysis techniques for measurement of attrition of needle-shaped particles that occurs during vacuum agitated powder drying
نویسندگان
چکیده
Analysis of needle-shaped particles of cellobiose octaacetate (COA) obtained from vacuum agitated drying experiments was performed using three particle size analysis techniques: laser diffraction (LD), focused beam reflectance measurements (FBRM) and dynamic image analysis. Comparative measurements were also made for various size fractions of granular particles of microcrystalline cellulose. The study demonstrated that the light scattering particle size methods (LD and FBRM) can be used qualitatively to study the attrition that occurs during drying of needle shaped particles, however, for full quantitative analysis, image analysis is required. The algorithm used in analysis of LD data assumes the scattering particles are spherical regardless of the actual shape of the particles under evaluation. FBRM measures a chord length distribution (CLD) rather than the particle size distribution (PSD), which in the case of needles is weighted towards the needle width rather than their length. Dynamic image analysis allowed evaluation of the particles based on attributes of the needles such as length (e.g. the maximum Feret diameter) or width (e.g. the minimum Feret diameter) and as such, was the most informative of the techniques for the analysis of attrition that occurred during drying.
منابع مشابه
Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.
The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the d...
متن کاملInfluence of Measurement Cell on Predicted Attrition by the Distinct Element Method
During agitated drying and mixing processes, particle beds are exposed to shear deformation. This leads to particle attrition, the extent of which is dependent on the prevailing stresses and strains in the bed. The distributions of shear stresses and strain rates within the bed are highly non-uniform, requiring attention to localised conditions. Therefore a narrow angular sector of the bed is d...
متن کاملEffect of Mechanical Milling on the Morphologyand Structural Evaluation of Al-Al2O3 Nanocomposite Powders
The morphological and microstructural changes during mechanical milling of Al powder mixed with 2.5, 5 and 10 wt.% Al2O3 particles were studied. The milling was performed in a planetary ball mill for various times up to 20 h. The produced composite powders were investigated using X-ray diffraction pattern (XRD) to elucidate the role of particle size, secondary phase content and milling time on ...
متن کاملSynthesis and Statistical Analysis of Changing Size of Nano-structured PbO2 during Mechanical Milling Using Taguchi Methodology
The research investigates synthesized Nano-structured PbO2 using ball milling. The structure and morphology of the samples were determined in the process of milling by means of XRD and SEM. The size of particles was estimated through DLS analysis. The TEM image of the synthesized powder verifies the achievement of Nano dimensions. Design and analyses of the results using Taguchi methodology rev...
متن کاملStudy of Drying Method Types on the Physicochemical Characteristics of Purple-Fleshed Sweet Potato Extract Powder
The purpose of this study was to obtain the best anthocyanin pigment extract powder from 3 types of drying process, vacuum drying, spray drying, and freeze-drying. The duration and temperature for each type of drying process are 15 h with temperature of 40 oC, 2 h with temperature of 120 oC (inlet) and 60 oC (outlet), 24 h with temperature of -50 o</su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017